Vimukta Jati Seva Samitee's

Gramin (ACS) Mahavidyalaya VasantNagar Kotgyal Tq.Mukhed Dist.Nanded

Department of Mathematics

Outcomes

Algebra and Trigonometry

- 1. Add, Subtract and Multiply of Matrices.
- 2. Recognize the different types of Matrices.
- 3. Find the Inverse of invertible Matrices.
- 4. Determine the Rank of a Matrices.
- 5. Transform matrix to Row Echelon form.
- 6. Solve the System of Linear Equations.
- 7. Find the characteristics Roots and characteristic Vectors of a Square Matrix.
- 8. Check that every square matrix satisfies is own Characteristic Polynomial.

Geometry - IV

- 1. Understanding concepts on Three Dimensional Geometry.
- 2. Find equations of Right lines, Planes, Spheres, Cones and Cylinders.
- 3. Find the Direction cosines of any line under the different given conditions.
- 4. Understand the intersection of any two or three, three dimensional geometrical figures.
- 5. Transform the equation of a plane to the normal form.
- 6. Transform equation of line from the unsymmetrical to the symmetrical form.
- 7. Find the length of perpendicular from a point to a plane.
- 8. Find the angle of intersection of two spheres.
- 9. Understanding concepts of plane of contact.

Real Analysis-I

- 1. Understand the basic concept of sets and their properties.
- 2. Understanding the concept of a neighborhood of a point, interior points of a set, open set.
- 3. Understanding concept of limit points of a set, closed set, closure of a set, dense set.
- 4. Understanding the basic concept of sequences, subsequences, bounds of sequences, limit point of sequences, general principle of convergence, different types of sequences.
- 5. Understanding the concept of infinite series, different types of series, the general principle of convergence.
- 6. Use the results to solve some problems.
- 7. Understanding the difference between different types of sequences, series, and comparison tests.

Elementary Number Theory

- 1. Apply different methods of proofs including induction, contradiction, counter examples to verify mathematical assertions.
- 2. Explain basic concepts like divisibility, greatest common divisor, congruence, linear congruence.
- 3. Solve systems of Diophantine equations using the Euclidean algorithm and Chinese remainder theorem.
- 4. Demonstrate knowledge and understanding of prime numbers.
- 5. Use Fermat's theorem and Wilson's theorem.

Partial Differential Equations

- 1. Classification of PDE
- 2. Solve linear as well as non-linear PDE of first and second order.
- 3. Apply PDE techniques to predict the behavior of certain phenomena.
- 4. Solve real problems by identifying them approximately from the perspective of PDE.
- 5. Mathematical formation of real problem precisely.
- 6. Solve problem using boundary conditions.

Ordinary Differential Equations

- 1. Understanding concept of solution of differential equations, order and degree.
- 2. Transform the equations into variable separable form.
- 3. Transform first-order non-homogeneous equation in x and y to homogeneous equation in x and y and solve it.
- 4. Find the equations that can be resolved into components equation and solve it.
- 5. Solve Clairaut's equations.
- 6. Find the solutions when the auxiliary equations are equal, different, repeated, and imaginary-roots.
- 7. Find the solution of the exact differential equation, rules of finding the integrating factor.
- 8. Transform non-linear equation to linear equation and solve it.
- 9. Find the solution of linear equation with variable coefficients.

Numerical Analysis

- 1. Estimate the value of function under certain assumptions.
- 2. Find the missing terms in the given data using numerical techniques.
- 3. Apply numerical derivation and numerical integration methods.
- 4. Investigate numerical solutions of differential equations.
- 5. Find the integration of a functions using numerical methods.
- 6. Find the solutions of ordinary differential equations.

Integral Transforms

- 1. Understand the concept of Integral Transforms.
- 2. Identify integral transforms by their integration limits and kernels.
- 3. Obtain integral transforms of functions.
- 4. Know the formulae for integral transforms of standard functions.
- 5. Understand various properties of integral transforms.
- 6. Apply the integral transforms for evaluating integrals.
- 7. Apply the integral transforms along with their inversion formulae for solving differential equations with initial conditions.
- 8. Apply the integral transforms along with their inversion formulae for solving systems of simultaneous differential equations with initial conditions.

Differential Calculus

- 1. Understanding concept of limit, continuity of single and two variable functions.
- 2. Find the higher order derivatives of product of functions.
- 3. Find equation of Tangent, Normal and length of Tangent Normal, sub-tangent, sub-normal.
- 4. Understanding of mean value theorem concepts.
- 5. Expand functions in terms of infinite series.
- 6. Understand the concepts of partial differentiation.
- 7. Use the results to solve problems.
- 8. Differentiate difference between derivative of single and two variables.

Integral Calculus -III

- 1. Apply method of integration to find the integral of function.
- 2. Solve examples of definite integrals using properties definite integrals.

- 3. Find the area and volume of given shape.
- 4. Understanding concept of Gamma and Beta functions.
- 5. Solve problems and multiple Integrals.

Practical Paper-V

- 1. Verify associatively of matrix addition, left and right distributive law of matrices.
- 2. Find determinant, Eigen values, Eigen Vectors, inverse, powers and characteristics polynomial of a square matrix.
- 3. To draw the graph of different functions with the help MATLAB Software and related Freeware.

Group Theory -VII

- 1. Understand the concepts on an equivalence relation.
- 2. Find the examples of equivalence relation.
- 3. Check whether the given se is a group for the given operation or not.
- 4. Understand the general properties of groups.
- 5. Solve problems on groups.
- 6. Understand the concepts of the cyclic group.
- 7. Use languages theorem to solve the problems in number theory.
- 8. Form a quotient group.
- 9. Find the Kernel of a group homomorphism.

Real Analysis -II

- 1. Understand the meaning of internal subinterval partitions and their refinement.
- 2. Understanding the basic concept of upper integral and lower integral and Riemann integral.
- 3. Understanding difference between upper sum, lower sum and Riemann sum.
- 4. Acquire the idea about Riemann integrability and Riemann integration.
- 5. Understand various theorems associated with Riemann integration.
- 6. Understand the meaning of improper integral.
- 7. Develop a knowledge about Riemann integration and applies to problems.
- 8. Determine convergence of improper integrals with discontinuities in their domain or infinite limits of integration.
- 9. Develop skill in checking the convergence of improper integral using various tests of convergence.
- 10. Understanding distinguishes between convergence and absolute convergence of improper integral.
- 11. Use comparison test with a corresponding improper integral with other improper integral to decide whether use the results to solve problems.
- 12. Use the results to solve problems.

Rind Theory -X

- 1. Understand given algebraic structure is a ring or not.
- 2. Construct the example of ring with known examples of ring.
- 3. Differentiate between zero divisors and non-zero divisors in a given ring.
- 4. Check whether the given idea of a ring is a principal ideal or not.
- 5. Understand the concepts on principal ideal ring.
- 6. Understand concepts on Euclidean rings.

Metric Spaces-XII

- 1. Demonstrate an understanding of metric spaces and subspaces by proving unseen result.
- 2. Produce examples and counter examples illustrating the mathematical concepts.
- 3. Understand the concepts of open and closet sets.
- 4. Understand the concepts and develop skill to check the positions of a point in the space.
- 5. Understand the concepts of convergences and completeness.
- 6. Understand the concepts of fixed point and Banach principle.

- 7. Understand the concepts of continuity and uniform continuity.
- 8. Understand the concepts of compact and non-compact sets with various properties.
- 9. Understand the concepts of Lebesgue Number for covers and correctness of sets.
- 10. After completion of this course student can aware with basic concepts of functional analysis.

Linear Algebra –XIII

- 1. Understand and prove algebraic statements about vector spaces, subspaces, basis, inner product spaces.
- 2. Determine a basis and the dimension of finite dimensional space.
- 3. Understand and prove statements about linear transformation.
- 4. Find the Kernel, range, rank and nullity of linear transformation.
- 5. Determine Eigen values and Eigen vectors.
- 6. Interpret a matrix as a representation of linear transformation.

Complex Analysis-XV

- 1. Operate basic mathematical operations with complex numbers in Cartesian and Polar forms.
- 2. Demonstrate the ability of limit, continuity, analyticity of a function.
- 3. Find the derivative and integral of a complex variable function.
- 4. Work with exponential and logarithmic functions.
- 5. Use Cauchy integral theorem and Liouville's theorem.
- 6. Use Taylor and Laurent's series.